

STTA212S

PRELIMINARY DATASHEET

TURBOSWITCH™"A". ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	2A		
V _{RRM}	1200V		
t _{rr} (typ)	65ns		
V _F (max)	1.5V		

FEATURES AND BENEFITS

- SPECIFIC TO "FREEWHEEL MODE" OPERA-TIONS: FREEWHEEL OR BOOSTER DIODE
- ULTRA-FAST AND SOFT RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- HIGH FREQUENCY OPERATIONS
- SURFACE MOUNT DEVICE

SOD15

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600V to 1200V.

TURBOSWITCH 1200V drastically cuts losses in all high voltage operations which require extremely fast, soft and noise-free power diodes. Due to their optimized switching performances they aloso highly decrease power losses in any associated switching IGBT or MOSFET in all "Freewheel

Mode" operations and is particulary suitable and efficient in Motor Control circuitries, or in primary of SMPS as snubber, clamping or demagnetizing diodes, and also at the secondary of SMPS as high voltage rectifier diodes.

(Plastic)

Packaged in SOD15 surface mount envelope, these 1200V devices are particularly intended for use on 3 phase 400V industrial mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	1200	V
V _{RSM}	Non Repetitive Peak Reverse Voltage	1200	V
I _{F(RMS)}	RMS Forward Current	8	Α
I _{FRM}	Repetitive Peak Forward Current (tp = 5 μs, f = 5kHz)	50	Α
Tj	Max. Operating Junction Temperature	125	°C
T _{stg}	Storage Temperature range	- 65 to + 150	°C

TM : TURBOSWITCH is a trademark of SGS-THOMSON Microelectronics May 1995 - Ed : 1B

STTA212S

THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-l)}	Junction to Lead Thermal Resistar	21	°C/W	
P ₁	Conduction Power Dissipation (see fig. 2)	$I_{F(AV)} = 1.5A$ $\delta = 0.5$ Tlead= 72°C	2.5	W
P _{max}	Total Power Dissipation Pmax = P1 + P3 (P3 = 10% P1)	Tlead= 67°C	2.8	W

STATIC ELECTRICAL CHARACTERISTICS (see Fig. 6)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _F *	Forward Voltage Drop	I _F = 2A	Tj = 25°C Tj = 125°C		1.1	1.65 1.5	\ \
I _R **	Reverse Leakage Current	V _R = 0.8 x V _{RRM}	Tj = 25°C Tj = 125°C		150	20 400	μА

Test pulses widths : $\,^{\star}$ tp = 380 $\mu s,\,duty\,$ cycle < 2%

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING (see Fig. 7)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{rr}	Reverse Recovery Time	Tj = 25°C $I_F = 0.5 A$ $I_R = 1A$ $Irr = 0.25A$ $I_F = 1 A$ $dI_F/dt = -50A/\mu s$ $V_R = 30V$		65	115	ns
I _{RM}	Maximum Recovery Current	Tj = 125°C VR = 600V I _F = 2A dI _F /dt = -16 A/μs dI _F /dt = -50 A/μs		6.0	3.6	А
S factor	Softness factor	Tj = 125°C V _R = 600V I _F = 2A dI _F /dt = -50 A/μs		TBD		/

TURN-ON SWITCHING (see Fig. 8)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{fr}	Forward Recovery Time	Tj = 25°C I _F = 2 A dI _F /dt = 16 A/μs measured at, 1.1 × V _F max			900	ns
V _{Fp}	Peak Forward Voltage				35	V

^{**} tp = 5 ms, duty cycle < 2%

APPLICATION DATA

The 1200V TURBOSWITCH has been designed to provide the lowest overall power losses in any all high frequency or high pulsed current operations.

In such applications (fig. 1 to 5), the way of calculating the power losses is given below :

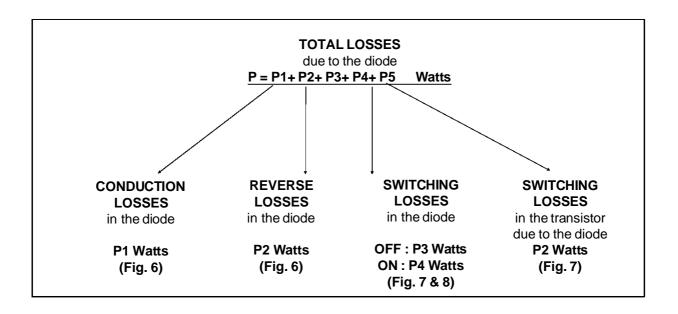
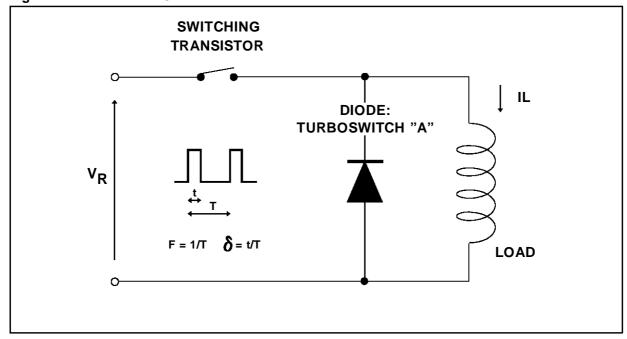



Fig. 1: "FREEWHEEL" MODE

APPLICATION DATA (Cont'd)

Fig. 2: SNUBBER DIODE.

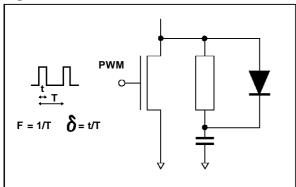


Fig. 3: CLAMPING DIODE.

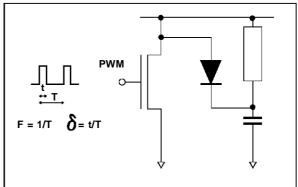


Fig. 4 : DEMAGNETIZING DIODE.

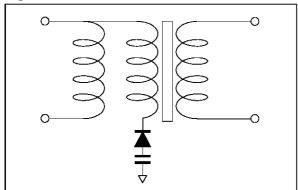


Fig. 5: RECTIFIER DIODE.

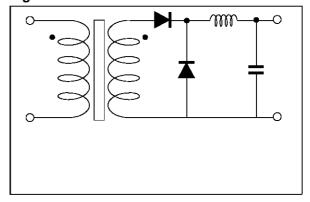
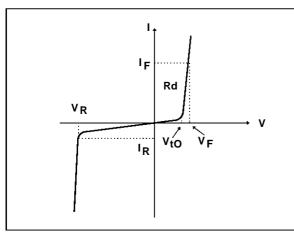



Fig. 6: STATIC CHARACTERISTICS

Conduction losses:

 $P1 = V_{t0} \times I_{F(AV)} + R_d \times I_{F^2(RMS)}$

with

 $V_{t0} = 1.15 \text{ V}$ $R_d = 0.175 \text{ Ohm}$ (Max values at 125°C)

Reverse losses:

 $P2 = V_R \times I_{R \times (1 - \delta)}$

APPLICATION DATA (Cont'd)

Fig. 7: TURN-OFF CHARACTERISTICS

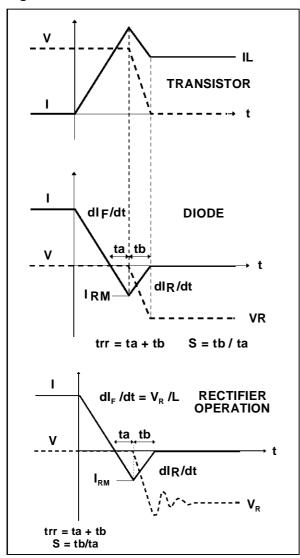
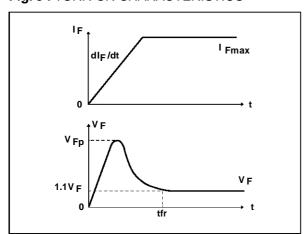



Fig. 8: TURN-ON CHARACTERISTICS

Ratings and characteristics curves are ON GOING.

Turn-on losses:

(in the transistor, due to the diode)

P5 =
$$\frac{V_R \times I_{RM}^2 \times (3 + 2 \times S) \times F}{6 \times dI_{F}/dt} + \frac{V_R \times I_{RM} \times I_L \times (S + 2) \times F}{2 \times dI_{F}/dt}$$

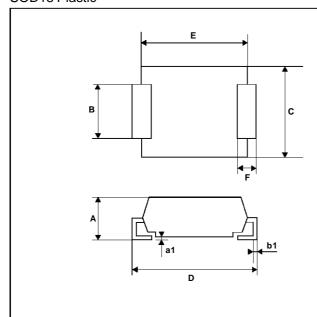
Turn-off losses (in the diode):

$$P3 = \frac{V_R \times I_{RM}^2 \times S \times F}{6 \times dI_F/dt}$$

Turn-off losses:

with non negligible serial inductance

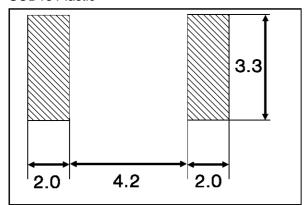
P3' =
$$\frac{V_R \times I_{RM}^2 \times S \times F}{6 \times dI_F/dt} + \frac{L \times I_{RM}^2 \times F}{2}$$


P3, P3' and P5 are suitable for power MOSFET and IGBT

Turn-on losses:

$$P4 = 0.4 (V_{FP} - V_F) \times I_{Fmax} \times t_{fr} \times F$$

PACKAGE MECHANICAL DATA


SOD15 Plastic

	DIMENSIONS				
REF.	Millimeters		Inches		
	Min.	Min. Max.		Max.	
Α	2.50	3.10	0.098	0.122	
a1	0.05	0.20	0.002	0.008	
В	2.90	3.10	0.114	0.122	
b1	0.29	0.32	0.011	0.012	
С	4.80	5.20	0.189	0.204	
D	7.60	8.00	0.299	0.315	
E	6.30	6.60	0.225	0.259	
F	1.30	1.70	0.051	0.056	

FOOTPRINT DIMENSIONS

SOD15 Plastic

Marking: T53
Laser marking

Logo indicates cathode

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

